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Abstract—This paper presents a new methodology for auto- This kernel function says that two points are similar if they are
matic knowledge driven data mining based on the theory of poth more likely given the modeé. Thus, data points lying in
Mercer Kernels, which are highly nonlinear symmetric positive R™ which may be far away from each other in the Euclidean

definite mappings from the original image space to a very AT .
high, possibly infinite dimensional feature space. We describe sense may turn out to be 'similar’ as measured by this kernel.

a new method called Mixture Density Mercer Kemels to learn We generalize this notion of similarity using Mixture Density
kernel function directly from data, rather than using pre-defined Mercer Kernels.

kernels. These data adaptive kernels can encode prior knowledge |n a recent paper [18], the notion of Mixture Density Mercer
in the kernel using a Bayesian formulation, thus allowing for orne|s was introduced. The idea is to express the distribution

physical information to be encoded in the model. Specifically, we function P in t faful B ian f lati f
demonstrate the use of the algorithm in situations with extremely unction P(x;) in terms of a fu ayeslan formulation o

small samples of data. We compare the results with existing @ density function. The kernel function is created by taking
algorithms on data from the Sloan Digital Sky Survey (SDSS) and bootstrap aggregate samples models based on the distribution

demonstrate the method’s superior performance against standard function. Thus, for one bootstrap sample, we have:
methods. The code for these experiments has been generated with

the AUTOBAYES tool, which automatically generates efficient and c
documented C/C++ code from abstract statistical model specifica- P(x;|0) = Z P(c)P(x;]6.) (2)
tions. The core of the system is a schema library which contains —1

templates for learning and knowledge discovery algorithms like . . . s
different versions of EM, or numeric optimization methods Due to the Bayesian formulation, prior distributions can be

like conjugate gradient methods. The template instantiation is placed on the model parameters for each bootstrap sample.
supported by symbolic-algebraic computations, which allows This allows us to encode domain knowledge into each model.
AUTOBAYES to find closed-form solutions and, where possible, to The kernel function is then composed of the sum of the outer

integrate them into the code. _The results show that the Mixture products of the class membership matrices. Thus, we have:
Density Mercer Kernel described here outperforms tree-based
K(xixj) = ®7(x;)®(x;)

classification in distinguishing high-redshift galaxies from low-
Cm,

redshift galaxies by approximately 16% on test data, bagged ,
trees by approximately 7%, and bagged trees built on amuch 1 M

larger sample of data by approximately 2%. = u Z Z Py (em|xi) P (¢ [x;) (3)
m=1c,,=1

. INTRODUCTION
whereK represents the a sum 8f bootstrap sample®(x;)

There is a growing interest in the machine learning and da&a composite class membership function, where each member

mining communities in the field d#lercer Kernelsdue to their of the composite is the posterior class distribution for a model.
mathematical properties as well as their use in Support Vectgys, for \/ models, we have:

Classifiers and Regressors. The theory of Mercer Kernels

allows data which may be embedded in a vector space, suctPa¥:) o [Pi(c=1]x;), Pi(c = 2[x;),...,

spectral lines, physical measurements, stock market indices, or Pi(c=Clx;), Pa(c = 1|x;), ..., Py(c = Clx;)]

may not arise from a vector space, such as sequences, graphs, _ . L

and trees to be treated using similar mathematics. Work the hard_clustenng case, where the posterl‘or- class distribu-
n for a given model is a zero-one vector, tfiej) element

Haussler [13] shows how to map sequences of symbols in h . i | d ibes h
a feature space using kernel similarity measures. In the saffidhe Mixture Density Mercer Kernel describes how many

paper, Haussler introduced the idea of a Probabilistic Kerr{gpfs' on avefrage, rt]hM modelsdagreeﬁ tgat dgtaf popts
function, or P-Kernel that obeys Mercer’s conditions (i.e., thfhdx; arose from the same mode in the density function.

kernel function must be symmetric and positive definite) and 'A_‘S 'S the case with ensemble methods, the greater the
is defined as follows: variability in these models, the better the performance of the

overall model. We demonstrate the degree of variability in the
K(x;,%x;) = P(x;]©)P(x,|0) (1) models due to different initial conditions in terms of variations



in the converged likelihood value. This paper elucidates thee © = (p, 1, 0) is the entire set of parameters that specify
idea and demonstrates its feasibility in working with a large  a mixture model.
astronomical data set known as the Sloan Digital Sky Survey.
The information required to construct the kernel function
(i.e., the class membership matrix) can be computed by an IIl. KERNELSBUILT FROM ENSEMBLES

application of the_ EM-aIgorithm [9]_ on a_suitable training Set. ;s section overviews two methods that we have created
A number of EM-implementations is available (€.g., Autoclastg build Mercer Kernels directly from data. The first method,
[6], [7], EMMIX [15], MCLUST [11.]) and any of them \yhich we call Mixture Density Mercer Kernels (MDMK)
.COU|d be used. Howeyer, in order to insert domain know[ed Ses an ensemble of probabilistic models to create a Mercer
Into th_e kerne_l matrix, the EM-_code has to be modifiegy ne| The second method, which we call the Bagged Tree
accordingly; this is time-consuming and error-prone. Morgeo o (BTK), uses an ensemble of decision trees to create a

over, since the choice of a particular prior has CONSEqUEN§EShel matrix. We begin with a brief discussion of the MDMK
for the quality of the kernel matrix, a certain amount o llowed by a synopsis of the BTK

experimentation is necessary. However, the exact form of the
prio'r can also hgve substantial consequences on the qeta”%.c’fMixture Density Mercer Kernels
the implementation (e.g., the form of the M-step or the internal . . . . .

data structures) which magnifies the implementation problem.The Mixture Density Mercer Kernel function given in (3)
Fortunately, the overall structure of the algorithm remains ttg Similar to the Cluster-based Similarity Partitioning Algo-
same and the details can be derived mechanically. Here, WM (CSPA) discussed in [1]. While their implementation
have appliedAUTOBAYES to produce the different variantsYS€s hard cIL_Jsterlng,. it can be extended to th_e soft cluster-
of the EM-algorithm. AUTOBAYES [5], [10], [12] is a fully N9 (expectgtlon—mammlzatlon) approach descrlbe_d here. An
automatic program synthesis system that generates efficidpportant difference between this work and previous work,

and documented C/C++ code from abstract statistical modiwever, is that we intend to use our kernel function in
specifications. support vector machines for classification and regression. The

modularity of SVMs allow different kernels to be implemented
that model the underlying data generating process in different

Il. NOTATION
ways.
« D is the dimension of the dat& is the number of data The Mixture Density Mercer Kernel is built using an
pointsx; drawn from aD dimensional space ensemble of Bayesian mixture density models. The Bayesian

formulation allows for prior information to be encoded in the
« M is the number of probabilistic models used ifnodel. Then, rather than computing a maximum-likelihood
generating the kernel function. estimator, we compute a maximum a posteriori estimator
which includes the likelihood function and the prior. The
« C is the number of mixture components in eacBreater the heterogeneity of the models used in generating the
probabilistic model. In principle one can use a differeriternel, the more effective the procedure. In theTOBAYES
number of mixture components in each model. Howevdmplementation of the procedure, the training data is sampled
here we choose a fixed number for simplicity. M times with replacement. These overlapping data sets, com-
bined with random initial conditions for the EM algorithm,
« x; is a p x 1 dimensional real column vector thatdid in generating a heterogenous ensemble.
represents the data sampled from a datatset In this work, we assume a Gaussian distribution as the
model for each class, with priors expressed in terms of a
e ®(x) : R? — F is generally a nonlinear mapping toconjugate prior for the Gaussian distribution. A conjugate prior
a high, possibly infinite dimensional, feature spa€e Is defined as a family" of probability density functions such
This mapping operator may be explicitly defined or mathat for everyf € F, the posteriorf(0|x) also belongs td.
be implicitly defined via a kernel function. For a mixture of Gaussians model, priors can be set as
follows [3]. For priors on the means, either a uniform dis-
e K(x;,xj) = ®(x;)®7(x;) € R is the kernel function tribution or a Gaussian distribution can be used. For priors
that measures the similarity between data poigt@and on the covariance matrices, the Wishart density can be used:
x;. If K is a Mercer kemel, it can be written as theP(S;|a, 3,J) |52 exp(—atr(X;1J)/2). For priors on
outer product of the ma@. As i and j sweep through the mixture weights, a Dirichlet distribution can be used:
the N data points, it generates dn x N kernel matrix. P(p;|y) « Hlep;ﬁ’l, wherep; = P(c = i). Maximum
a posteriori estimation is performed by taking the log of the
« p. is the mixture weight for the th mixture, andg(i,c) posterior likelihood of each data poigt given the modeb.
is the posterior probability of class membership, i.eThe following function is thus optimized using the Expectation
q(i,c) = P(c|x;) Maximization [8] for a Gaussian mixture model with priors on
the means only.



For example, the log posterior probability likelihood function.

D C D C (u»»—a")Q
2 7 2]
loa(P (1. | ¢,0%) x P(c | p) ORI D Ve
=1 j=1 =1 j=1 YAAY)
N C D (Ths — i) C D N
for a model with conjugate priors on the means is thus +qui~ﬂ'z ’“02 kg +Zzlog(’a2biijﬂ)
computed as follows. The first step is to marginalize (i.e., i=1j=1 k=1 ksj i=1 j=1 j=1
sum out) the latent variablevia the expectatiorg. However, c c N
to keep this step tractable, it is important to delay the actual+A "logp; + Y logp; ¥ _ g;
summation as long as possible. We thus introduce the “delayed =1 i=1 j=1

i=1...N

dom c;~@q;

summation” operatop which gives us

This rather onerous derivation of the likelihood function
(including the #TpX-code for the displayed formulae!) was
i=1..N ) i=1..N generated fully automatically bxUTOBAYES. It is important

Zdom cimas log P(p,z [ ¢,0%) + Zdom Cimgi log P(c] p) to note that although this likelihood function is much more

complicated than the likelihood function for a model with no
We can then apply the product rule to decompose the protf4lors, it does not change the underlying parametric statistical
bilities and then replace them by the density functions. THi§Scription of the data. Thus, the slightly increased computa-

gives us the formidably looking log-likelihood function tional burden is only seen at the model building stage, but not
at the model evaluation stage.

The art of choosing priors is one of much study in Bayesian

b o exp (W> data analysis. As will be seen later in this work, we choose
_ 5 : :
22:1.,.1\[ log 11 (V/75.1Pi.x) priors based on human knowledge about the domain problem
dom ¢;~q; et /o /Uzkﬂj . as well as from various visualizations of the data that indicate
’ PR where modes should be placed. In the problem of classifying
— (2 e —ncp)? low and high redshift galaxies, we only include priors on the
p N %XP 012"%2 means of the Gaussians, rather than on the mixture weights or
X H H the covariance matrices.
j=1k=1 V2mfo?
N B. Bagged Tree Kernels
+Zi:1'“N log H p The Bagged Tree Kernel uses an ensemble of bagged
dom c;~q; Ci ! [} . . . .
i~a trees to 'vote’ on the most likely class distribution for a

particular pair of data points;, x;. Thus, in Equation 3 the
ﬁleass distributionP,, (¢, |x;) is given by a tree function. The

NOW. we can actually execute the delayed summaﬂons; trfemaining computations are the same as for the MDMK. We
crucial step is to replace all occurrences of the latent variab

inside the body of th@izl"'N by appropriately re-indexed mefroduce this kernel function as a natural extension of an

. dom Ci~q; . .~ ensemble of bagged trees into the support vector machines.
and weighted occurrences. For example, this step S|mp‘?|— 99 PP
fiesS ot log [Ty pe, into S0y log [T1, gj.ipe, - After IV. AUTOBAYES

further simplifications, we then get the more tractable form: A roBavES is a fully automatic program synthesis system
for the data analysis domain. It is implemented in Prolog and

1 D C comprises about 80,000 lines of documented code. From the
—(§CD log 27 + DN log 2 + ZZIOgﬁm outside, it looks similar to a compiler: it takes an abstract
i=1 j=1 problem specification in the form of a statistical model and
Db ¢ ) b ¢ (i — )2 translates it into executable code. On the inside, however, it
+ Z Z log oy ; + Z Z ;(J3,2 2 fj works quite differentAUTOBAYES first derives a customized
i=1j=1 i=1j=1 BI I algorithm implementing the model and then transforms it
N C D T R N into optimized C/C++codeimplementing the algorithm. The
+ Z Z Qij Z (ximafum) + Z Z log 0‘72*@ Z 4j,i) algorithm derivation osynthesiprocess—which distinguishes
i=1j=1 k=1 ki i=1 j=1 J=1 AUTOBAYES from traditional compilers—relies on the intri-
< N cate interplay of three key technique®. AUTOBAYES uses
+ Zlog Pi an‘,i Bayesian networkéBNs) [4], [17] as a compact internal rep-
i=1 j=1

resentation of the statistical models. BNs provide an efficient
encoding of the joint probability distribution over all variables
After dropping the terms in the first line (which are indeand thus enable replacing expensive probabilistic reasoning by
pendent of the goal variables), and introducing the Lagrandaster graphical reasoning. In particular, they speed up the de-
multiplier A we get the following final form of the log- composition of a problem into statistically independent simpler



model mog as Multivariate Mixture of Gaussians’ distributed as a discrete distribution with the relative class

const int D := 5 as ’'number of bands’ const frequencies given by the also unknown vecpi . Since
int_ N ﬁh’nuinbergf data points’ each point must belong to a class, the sum of the probabilities
const int_ C as 'number of classes’ must be equal to one. Finally, we specify the goal inference

with 1 < C; task, maximizing the conditional probabilipr(x |  {phi,

with C << N; mu, sigma }) with respect to the parameters of interest,
double phi(1..C) as __ ’'class probabilities’ phi , my andsigma . This means that we are interested in a

with 1 = sum(i = 1.C, phi(_i)); maximum likelihood estimate (MLE) of the model parameters;
double mu(1..D, 1..C); double __ sigma(1..D, 1..C}, maximum aposteriori estimates (MAP) can be specified by
output int_ c(1.N) as__ ’latent variable’; c( ) ~ adding priors to the model. Note that the model is completely
discrete(phi); declarative and does not require the user to prescibe any
data double x(1.D, 1.N); x(i, j) ~ gauss(mu(_i.c( i), algorithmic aspects of the estir_nation pr_OgrdhEILTOBAYES.iS
sigma(_i,c()))); thus free to select any clustering algorithm that is applicable;

_ ) ) _ however, users can force the derivation of specific solutions

max pr(x | {phi, mu, sigma }) wit_ {phi, mu, sigma } o o ) means instead of EM) via command line parameters.

] o ) ) Bayesian Networks. A Bayesian networkis a directed,
zlrg. ulhdeﬁilrJ]Tez?AYEs-speC|f|cat|on for Gaussian mixture model. KeywordsacycIiC graph whose nodes represent random variables and
whose edges define probabilistic dependencies between the
random variablesAUTOBAYES uses hybrid BNs with plates
subproblems.i{) AUTOBAYES usesprogram schemass the [4] to represent the statistical models internally. Hence, nodes
basic building blocks for the algorithm derivation. Schemasan represent discrete as well as continuous random variables.
consist of a parameterized code fragment or template andPlates generalize the concept of independent and identically
set of constraints which are formulated as conditions on BNdistributed {.i.d.) random variables and “collapse” collections
The templates can encapsulate advanced algorithms and d&tadependent, co-indexed random variables into graph nodes
structures, which lifts the abstraction level of the algorithmepresenting the non-repeated core structure; this keeps the
derivation. The constraints allow the network structure to guidgaphs compact and the graphical reasoning routines (e.g.,
the application of the schemas, which prevents a combinatorgaimputing the parents, children, or Markov blanket [17] of
explosion of the search spacéi )( AUTOBAYES contains a a node) fast. Distribution and dimension information for the
specializedsymbolic subsystemwhich can find closed-form random variables is attached to the respective nodes and plates.
solutions for many problems and emerging subproblems. TheProgram SchemasA schemaconsists of a parameterized
combination of these techniques results in a fast synthes@mle fragment (i.e., template) and a set of constraints. The
process which compares in speed to the compilation of tharameters are instantiated ByuTOBAYES, either directly
synthesized code. or by calling itself recursively with a modified problem.
Specification Language A statistical modeldescribes the The constraints determine whether a schema is applicable
properties of the data in a fully declarative fashion: for eacddnd how the parameters can be instantiated. Constraints are
problem variable of interest (i.e., observation or parametefdrmulated as conditions on the Bayesian network or directly
properties and dependencies are specified via probability dis- the specified model; they include the maximization goal
tributions and constraints. Figure 1 shows how the standaasl special case. This allows the network structure to guide the
Gaussian mixture model with diagonal covariance matricepplication of the schemas and thus to constrain combinatorial
can be represented IAUTOBAYES's specification language. explosion of the search space, even if a large number of
The model assumes that the data consistNgboints in schemas is available. Schemas are implemented as Prolog-
D dimensions such that each point belongs to oneCof clauses and search control is thus simply relegated to the
classes; the first few lines of the specification just declaRrolog-interpreter: schemas are tried in their textual order.
these symbolic constants and specify the constraints on thérhis simple approach has not caused problems so far, mainly
However, instead of drawing each pok{tl...C, ) (where because the domain admits a natural layering which can be
corresponds to Matlab’s subrange operator, and, j  used to organize the schema library. The top layer comprises
are index variables) from a multivariate Gaussidnj) with network decomposition schemas which try to break down
a full DxD-dimensional covariance matrix, each bandis the network into independent subnets, based on independence
drawn independently from a univariate Gaussian with me#imeorems for Bayesian networks. These are domain-specific
mu(.,c( j)) and standard deviatissigma( _i,c( j)) . divide-and-conquer schemas: the emerging subnets are fed
The unknown distribution parameters can be different for eaback into the synthesis process and the resulting programs
class and each band; hence, we declare them as matrices. &reecomposed to achieve a program for the original problem.
unknown assignment of the points to the distributions (i.eAUTOBAYES is thus able to automatically synthesize larger
classes) is represented by the latent varialsince we are programs by composition of different schemas. The next layer
interested in the classification results as well (and not ontpmprises more localized decomposition schemas which work
the distribution parametersy, is declared a®utput . c is on products of.i.d. variables. Their application is also guided



by the network structure but they require more substantlBedshifts” can be driven sufficiently low enough we can,
symbolic computations. The core layer of the library contairfer the first time, use a sample of ordén®. This two
statistical algorithm schemas as for examgkectation max- orders of magnitude improvment could have very significant
imization (EM) [9], [14] and k-Means (i.e., nearest neighbommplications for contemporary theories of the Universe.
clustering); these generate the skeleton of the program. Th&DSS photometry (five broad band filters/colors ugriz) with
final layer contains standard numeric optimization methodslculated accurate photometric redshifts is our goal. For ex-
as for example the Nelder-Mead simplex method or differeample, the SDSS will havi® (to datex 125,000 measured)
conjugate gradient methods. galaxy redshifts. The next largest survey has approximately

Symbolic Subsystem AUTOBAYES relies significantly on 220,000. All of the rest of the redshifts surveys do not add up
symbolic computations to support schema instantiation atalthat of the 2dFGRS alone. SDSS photometry will eventually
code optimization. The core part of the symbolic subsysteconsist 0f10® objects §3 x 10° currently). Again, no survey
implements symbolic-algebraic computations, similar to thosgproaches this quantity of data. Another survey is closest
in Mathematica [19]. It is based on the concept of terwith 400 million objects, but only two "colors” are measured,
rewriting [2] and uses a small but reasonably efficient rewrife is spread across entire sky, is a much shallower survey
engine. Expression simplification and symbolic differentiatioand consists mostly of stars within our own galaxy, rather
are implemented as sets of rewrite rules for this rewrite engirthan external galaxies as in the SDSS. The results from the
The basic rules are straightforward; however, the presencelatest methods used to attack the Photometric Redshifts in the
vectors and matrices introduce a few complications and requB®SS range from root mean squared errors from 0.034 - 0.066
a careful formalization. In additionPAUTOBAYES contains a and show considerable variability due to sampling. To be able
rewrite system which implements a domain-specific refinemeot map the filamentary structures in the Universe we need a
of the standard sign abstraction where numbers are not osignificant improvement in the root mean square error of the
abstracted intgposand negbut also intosmall (i.e., |z| < 1) competing methods.
andlarge. AUTOBAYES then uses a relatively simple symbolic
equation solver built on top of these rewrite systems. 600

Backend. The code constructed by schema instantiation
and composition is represented in an imperative intermediate soo- 8
language. This is essentially a “sanitized” subset of C (e.g.,
no pointers), which is extended by a number of domain-
specific constructs like vector and matrix operations, finite
sums, and convergence-loops. Since straightforward schem
application can produce suboptimal cod®)TOBAYES in-
terleaves synthesis and advanced code optimization (cf. [16]
for an overview). Schemas can explicitly trigger aggressive [
large-scale optimizations like code motion, common sub- §
expression elimination, and memoization which can take ad-
vantage of information from the model and the synthesis |
process. Traditional low-level optimizations like constant prop-
agation or loop fusion, however, are left to the compiler. In a 275200 30 0 s0 w0 70 a0 w0
final step, AUTOBAYES translates the intermediate code into R Ascension
code tailored for a specific run-time environment. Currently,
AUTOBAYES includes code generators for the Octave arfdd- 2. Example clustering of one small section of the sky using spectro-

. . scqpically determined redshifts. Crosses indicate field-galaxies, i.e., those that

magallj eZnV”gnmentS: it can also produce stand-alone C not on filaments. Dots indicate galaxies that are on filaments.

odula-2 code.

Distance Cutoff = 1.25 # Background Galaxies= 164
T T T T

rel)

iof

200
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V. EXPERIMENTS AND RESULTS B. Choosing Parameters for the Mixture Model

A. Sloan Digital Sky Survey In a first set of experiments, clustering UsiAGTOBAYES
Mapping the large scale structure of the universe is negenerated code was used. Our model is a multi-variate mixture
essary in order to better constrain formation scenarios @f Gaussians. Figure 1 shows the entke TOBAYES speci-
structures of all scales (from galaxies to large walls) in tHecation. We ran this model and varied the desired number
universe. To this end, measuring the "distances” and xef classes from 3 to 30. Because our EM algorithm uses a
projections on the sky of the largest number of objects possilbbEndomized initialization, 10 independent runs were carried
is necessary. Thus far it has been difficult to use only broadt. Figure 3 shows the log-likelihood for the given parameters
band color data to accurately map mass on a broad rarafter clustering, the solid line shows its mean. From this graph
of scales. Astronomers have only been successful in doiiigs obvious that the initialization plays an important role as
this on small numbers of spectroscopically measured galaxiestrongly influences the result. From this figure one can also
(of order 10°). If the errors on what we call "Photometricdeduce that the best number of clusters for the given data set is
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around 12. For larger numbers of clusters, the log-likelihood
does not change much, indicating that the increased model
complexity does not appreciably increase the fit of the model. 000
For each of the clustering runs, EM needed between 5 and 55
iterations, with mean of 14.2 iterations to converge.
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Fig. 3. Log-likelihood of a Gaussian mixture model with no priors as a 30000 - 1

function of the number of components in the model. Each box corresponds
to one run. Notice that there is substantial variation in the terminal value of
the likelihood function, which is due to the well-known sensitivity of the EM
algorithm to initial conditions.
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The redshift of a galaxy has a strong connection on how  ***[ o g B - o
its spectral features are mapped onto the 5 spectral bands - R °
given by the symbolsy, g,r,i, and z). If, for example, a 36000 o 1
significant spectral feature of a near galaxy shows up in band o - - - — o
r, the corresponding feature of a similar, but distant galaxy umber of classes

would be shifted toward the next bandThus, we can assume

that the data points in the different bands are not uncorrelatéeh. 5. Log-likelihood over number of components; distant galaxies only
(as in the previous model), but that they have correlations

with the neighboring band. This extended model, which has

a band covariance matrix, includes a simple transformatidauble mu_0(0..D-1, 0..C-1). double  kappa_0(0..D-1,
of the data: the new clustering algorithm gets the original &-C-1)- muCi._j) = gauss(mu_0(i,_j), ) of i i
bands, but also the difference signal between adjacent bands: sqri(sigma(_i._j)) appa_0(1,_J))-

w—g,9—rr—1i1— 2z Figure shows the results of thismay pr( {mu, x} | { sigma, phi }) wrt_ {phi, mu,
clustering in terms of the likelihood function. The likelihoodsigma }.

function shows similar variation, and when penalized for the fh ificati . h B
additional model complexity, also indicates that the corredf'€ rest of the specification remains unchangedroBAYES

number of clusters is around 12 automatically instantiates the appropriate EM algorithm with
In the next experiment, a subset of our training data set wAshighly complex log-likelihood function given in Section
used. It contained all data points, for which the measured req-” Vvisual investigation of the data displayed in Figure 6
shift was larger that 0.3. This data set contains 4530 of tfiiflicated that cluster centers need to be placed in spectral
52744 data points. A similar clustering experiment (with thg9'10ns which would model high redshift gaIaX|e§. We p'iiced
above AUTOBAYES model) revealed that the best number o clusters, based on the results from the clustering of distant
clusters for distant galaxies is much lower (around 5). Figuredglaxies only, at the spectroscopic inputs corresponding to

illustrates this those galaxies. Those clusters had priors associated with them
) . on ther spectral band, since that has maximum correlation
C. Incorporating Prior Knowledge with the redshift. The remaining input dimensions had no

In order to incorporate prior information in teUTOBAYES  priors. Furthermore, we did not place priors on the mixture
model, we specified conjugate priors on the mean vajluesweights or the covariance matrices. Non-isotropic diagonal
The only changes of the specification are the declarationsaafvariance matrices were used in this study. With this model,
the prior parameterg, andxy, their relationship to the mean,we trained 20 mixture models to build the Mixture Density
and a new optimization goal: Mercer Kernel.



S the result for the Mixture Density Mercer Kernel SVM.
o The next experiment that we performed increased the train-
S - ing population for the bagged trees from the original scenario,
° 0 ,’5 0 / where we were drawing bootstrap samples from 1500 points
Fo o w0k o s . to 45,000 points, representing a 30 fold increase in the amount
e ,’? . / . / of training data. This dramatic increase in training data helped
. - . the bagged trees true positive rate, bringing it to approximately
Ry —2—fa—E S0 91%, still 2% lower than the result for the MDMK SVM,
T o 0 T S which was built on a data set 30 times smaller in sidete
@0 g 0 e 0 sge oo . that for all experiments described here, we report the best
w0 | o] o s ol x| o] S results out of several runs for all models.
W e e v o ke The significant increase in classification accuracy can be
£ o s o o s attributed to the structure induced in the kernel matrix by
k2 = i i : the mixture modelling process. We computed a kernel matrix

o oo oe e % 0 5 %0 0 1050 o w0 % vt using the procedure outlined in this paper, and evaluated the
matrix entries using a data set that was sorted in increasing

Fig. 6. This figure shows a multivariate scatter plot between the banggderpf redsr_\n‘t. The resultlng matrix Clearly §hOWS that hlgh
(u,g,7,4,2) and the redshift. Galaxies which are farther away, i.e., thod@dshift galaxies are generally not confused with lower redshift
with higher redshift have lower spectral energy in the band, as expectgfhlaxies by the model. There are two notable exceptions in the

gﬁgrrst)si/ngsﬁgsguf;\;enm%g;Pectral content. This information was used to gek iy Confusion would be indicated by large off diagonal
elements in the matrix. Note that we have displayed the kernel

matrix in sorted order only for illustrative purposes. The sup-
port vector machine’s classification accuracy is independent
of the order in which the data is presented; the underlying

The Mixture Density Mercer Kernel was built using probmathematics is invariant subject to the permutation of the data
abilistic models that included priors as well as those withodhd the corresponding kernel values.

priors on a training set of 1500 galaxies and a test set of
5000 galaxies. We first submitted the MDMK along with the
5000 test galaxies to a single CART decision tree module
available in Matlab. The resulting confusion matrix indicated
that only 77% of the distant galaxies (those with a redshift
greater that 0.3) were classified correctly. Thus, the model had
a true positive rate of 77%. Using the Mixture Density Mercer
Kernel, this rate was dramatically improved to approximately
93% using the same training and test data. The tree and
the MDMK classified approximately 99% and 97% of the
nearby galaxies correctly. This however, is an easy problem
since nearby galaxies may have high spectral energy content,
whereas distant galaxies never have high spectral content. It
is much more difficult to distinguish far galaxies from those
that are dim and neatr.

The Mixture Density Mercer Kernel performed significantly
better than the benchmark classifier that we used regardless
of the use of prior information. It turned out that in this
application, prior information only improved the results of th&ig. 7.  This figure illustrates the reason that the Mixture Density Mercer
s negliverte by about 196 Whioh s Wt v vy s v o v e v
due to the model uncertainty. Subsequent research into ther in the lower right hand corner of the matrix.
specific location of the priors and the shape of the covariance
matrices will be performed. We ran the Mixture Density Mercer Kernels in a support

In order to further test the quality of the SVM based owmector regression machine in order to directly estimate redshift.
Mixture Density Mercer Kernels, we built an ensemble dfor this problem, regardless of the use of priors, we were
20 bagged trees that were built on bootstrap replicates draalrie to obtain a root mean squared error of approximately
from the training set. For this scenario, we found that the tr@057 on test data, which is comparable to the error rates of
positive rate increased from 77% for the single tree to 86%ublished methods on large samples. This data shows a great
The true negative rate remained the same. However the tdeal of sample-to-sample variability. A CART regression tree
positive rate, although appreciably higher, was still lower thaealized a root mean squared error of approximately 0.045,

D. Evaluation of Results




which is about 10% better than the MDMK described herglan to explore this avenue further to see how the MDMK be-

These results, however, are not surprising since the MDMK
built to have high performance on classification tasks.

mves under constrained conditions. We also plan to generalize
the MDMK to multiclass problems.
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Fig. 8. Comparison of the true positive and negative rates and computatiz{ﬁ]
time as a function of the size of the ensemble. The first panel shows the results
of running a single tree 2000 times. The second panel shows the results of
2000 runs of 100 bagged trees. The third panel shows the results of an SV
built with the RBF kernel. The fourth and fifth panels show the results o
the an SVM built with the MDMK kernel and the BTK kernel. Notice that
the true positive rates are higher for the MDMK kernel at the expense of a
slightly lower true negative rate and higher computation time. (8]

VI. CONCLUSIONS Bl
Our results indicate that for a difficult, real-world classif10]
fication task, the Mixture Density Mercer Kernel (MDMK)
performs better 16% better than a decision tree. We have de(;(ﬂ]
oped a method to incorporate prior knowledge into the model
which is a novel approach to learning kernels directly from
data. The MDMK with priors was built withAUTOBAYES,
which automatically generates code to model mixture densities
with prior information. TheAUTOBAYES system generates
code to model the mixture density based on high-level specH?’]
cations, automatically instantiates the associated EM algorithm
schema, performs all necessary optimizations, and generates
the symbolic solution along with the likelihood function. [15]
We plan to further investigate the use of prior information
in the Mixture Density Mercer Kernel framework on othe 16]
real world and synthetic problems. The dramatic increase ‘in
classification accuracy that is exhibited here is most like[y7]
due to the way the kernel function is constructed. The use
of prior information may prove to be very useful as neyg;

Systems Intelligent Data Understanding Program.

REFERENCES

Strehl A. and J. Ghosl€Gluster ensembles a knowledge reuse framework
for combining multiple partitionsJournal of Machine Learning Research
3(2002), 583-617.

Franz Baader and Tobias NipkoWerm rewriting and all that Cam-
bridge Univ. Press, Cambridge, 1998.

W. L. Buntine, Operations for learning with graphical modeldournal

of Atrtificial Intelligence ResearcR (1994), no. 1, 159-225.

Wray L. Buntine,Operations for learning with graphical model3AIR

2 (1994), 159-225.

Wray L. Buntine, Bernd Fischer, and Thomas Pressburgewards
automated synthesis of data mining prograr®soc. 5th KDD (San
Diego, CA) (Surajit Chaudhuri and David Madigan, eds.), ACM Press,
August 15-18 1999, pp. 372-376.

Peter Cheeseman, James Kelly, Matthew Self, John Stutz, Will Taylor,
and Don FreemanAutoclass: A bayesian classification systepnoc.

5th Intl. Conf. Machine Learning (Ann Arbor, Michigan) (John E. Laird,
ed.), Morgan Kaufmann, July 1988, pp. 54-64.

Peter Cheeseman and John St@ayesian classification (AutoClass):
Theory and resultsProc. 2nd KDD (Usama M. Fayyad, Gregory
Piatetsky-Shapiro, Padhraic Smyth, and Ramasamy Uthurusamy, eds.),
AAAI Press, 1996, pp. 153-180.

A. P. Dempster, M. Laird, N., and D. B. Rubiiaximum likelihood from
incomplete data via the em algorithrdournal of the Royal Statistical
Society B (1977).

A. P. Dempster, N. M. Laird, and Donald B. RubMaximum likelihood
from incomplete data via the EM algorithm (with discussjah)of the
Royal Statistical Society series 3 (1977), 1-38.

Bernd Fischer and Johann SchumaAntoBayes: A system for gener-
ating data analysis programs from statistical mogel§P 13 (2003),

no. 3, 483-508.

Chris Fraley and Adrian E. Raftery] CLUST: Software for model-based
clustering, density estimation, and discriminant analy3isch. Report
415, Department of Statistics, University of Washington, October 2002.

] Alexander G. Gray, Bernd Fischer, Johann Schumann, and Wray Bun-

tine, Automatic derivation of statistical algorithms: The EM family
and beyond NIPS 15 (Suzanna Becker, Sebastian Thrun, and Klaus
Obermayer, eds.), MIT Press, 2003, pp. 689-696.

D. Haussler,Convolution kernels on discrete structurekech. report,
University of California Santa Cruz, 1999.

Geoffrey McLachlan and Thriyambakam Krishnarhe EM algorithm
and extensionsWiley Series in Probability and Statistics, John Wiley
& Sons, New York, 1997.

Geoffrey McLachlan, David Peel, K. E. Basford, and P. Adaifise
EMMIX software for the fitting of mixtures of normal and t-components
J. Statistical Softward (1999), no. 2.

Steven S. MuchnickAdvanced compiler design and implementation
Morgan Kaufmann Publishers, San Mateo, CA, USA, 1997.

Judea PearlProbabilistic reasoning in intelligent systems: Networks
of plausible inferenceMorgan Kaufmann Publishers, San Mateo, CA,
USA, 1988.

A. N. Srivastava,Mixture density mercer kernels: A method to learn

understandings about the data generating process and thekemels directly from dataProceedings of the 2004 SIAM Data Mining

associate physics arise. (1]
The results also indicate that the Mixture Density Mercer
Kernel can be an excellent representation for classification
problems using very small samples of data. In resource con-
strained environments, where CPU, RAM, or other computa-
tional power is constrained, this kernel may have utility. We

Conference (2004).
Stephen Wolfram,The mathematica boolith ed., Cambridge Univ.
Press, Cambridge, UK, 1999.



